曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。
1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2).
2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。
3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1).
在某点处的曲线的法线上,在凹的一侧取一点O ,点O到曲线上该点的距离等于此处的曲率半径r,使以O为圆心,r为曲率半径作圆,这个圆叫做曲线在点处的曲率圆,曲率圆的圆心叫做曲线在点处的曲率中心。
曲率中心,英文名:centre of curvature,在点处的曲线的法线上,在凹的一侧取一点 ,使以O为圆心,R为半径作圆,这个圆包含这一点及其相邻的那一小段圆弧,这个圆叫做曲线在点处的曲率圆,曲率圆的圆心叫做曲线在点处的曲率中心。说白了,就是在曲线上某一点找到一个和它内切的圆,它的圆心即为曲率中心。
函数y=f(x)的曲率中心D(m,n)为:
m=x-y'(y'^2+1)/y''
n=y+(y'^2+1)/y''
这个参数方程也是函数的渐趋线的方程。
匿名回答于2022-01-14 01:53:30