全心思齐网

方程两根公式?

一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a

匿名回答于2021-05-19 22:16:40


方程的两个根的公式是ax^2+bx+c=0 x1+x2=-b/a,一元二次方程的两个根可以通过因式分解法和十字相乘法解出。

因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

匿名回答于2020-09-01 15:35:52


求方程的根公式为:ax²+bx+c=0,x=[(-b)±√(b²-4ac)]/2a,其中a为二次项系数,b为一次项系数,c是常数,它是由方程系数直接把根表示出来的公式。

方程,是指含有未知数的等式,是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。


假设一元二次方程 ax^+bx+C=0(a不等于0),方程的两根x1,x2和方程的系数a、b、c就满足:x1+x2=-b/a,x1x2=c/a。

如果两数α和β满足如下关系:α+β=-b/a,α·β=c/a,那么这两个数α和β是方程 ax²+bx+C=0的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。

匿名回答于2022-07-09 20:34:07


相关知识问答