方差=1/5[(3-8.48)^2 (7-8.48)^2 (11-8.48)^2 (15-8.48)^2 (19-8.48)^2]=38.3504统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的 平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。运用频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。
它主要是为了将我们获取的数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。
分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征。当数据在100以内时,一般分5~12组为宜。从频率分布直方图可以估计出的几个数据:
众数:频率分布直方图中最高矩形的底边中点的横坐标 。
算术平均数:频率分布直方图每组数值的中间值乘以频率后相加。
加权平均数:加权平均数就是所有的频率乘以数值后的和相加。中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。
匿名回答于2019-06-23 18:43:01
频率,是单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或u表示,单位为秒分之一。为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学和无线电技术中也常用。
匿名回答于2021-12-17 04:36:44