全心思齐网

什么叫线性无关?

在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。
例如:

在三维欧几里得空间R的三个矢量

(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。
性质:
1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、n+1个n维向量总是线性相关。(个数大于维数必相关)

匿名回答于2021-07-15 04:36:32


三维直角坐标系中的基底i,j,k(夹角互为90°),假设向量m=xi+yj+zk,m可以等于任意值,也就是该空间的任意向量,即i,j,k可以表示空间的所有向量,这里的i,j,k就是线性无关。


相应的,任意三个向量a,b,c(全不等于0)不共面即可表示出三维空间的所有向量,称a,b,c线性无关;


如果向量a,b,c共面,则不能表示出整个空间,称a,b,c线性相关。

匿名回答于2021-07-15 23:05:32


相关知识问答