全心思齐网

二项分布的样本均值和总体均值?

一、样本平均值与总体平均值的区别 1、定义不同 样本均值是指在总体中的样本数据的均值。而总体均值又称为总体的数学期望或简称期望,是描述随机变量取值平均状况的数字特征。包括离散型随机变量的总体均值和连续型随机变量的总体均值。

2、计算依据不同 样本均值的计算依据是样本个数,总体均值的计算依据是总体的个数。一般情况下样本个数小于等于总体个数。

3、代表意义不同 样本均值代表着所抽取的样本的集中趋势,而总体均值代表着全体个体的集中趋势。

样本来自总体,但是样本只是总体的一部分,两者不可能完全相等,一般有差异。 二、样本平均值与总体平均值的关系 1、计算思路相同:两个均值的计算思路都是用所测量的群体的某指标的总和除以群体个数。

2、反映的都是数据的集中趋势。

样本均值和总体均值都是反映数据集中趋势的一项指标。

3、两者一般情况下不完全相等,样本是对总体的推测。

样本只是总体的一部分,样本取自总体,可以反映总体的特征,因此样本平均值也会比较接近于总体平均值,恰好等于总体平均值的机会很少。

一般情况下样本均值与总体均值之间会有些差异。 来源:-样本平均值 来源:-总体平均值

匿名回答于2021-04-08 06:36:17


二项分布的样本均值服从正态分布。

样本均值的抽样分布在形状上却是对称的。随着样本量n的增大,不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值μ,方差为总体方差的1/n。这就是中心极限定理(central limit theorem)。

正态分布

具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。

匿名回答于2021-10-11 18:33:02


相关知识问答