复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cosθ+isinθ(弧度制)推导而得。
把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
匿名回答于2021-12-18 19:26:40
(a+bi)÷(c+di)
=(a+bi)(c-di)÷[(c+di)(c-di)]
=(ac-adi+bci-bdi^2)÷(c^2-d^2i^2)
=[(ac+bd)+(bc-ad)i]/(c^2+d^2)
复数(包括纯虚数)当然也可以作除法运算。
复数的乘法 [公式] 相当于将 z1 逆时针转动 z2的辐角,再将z1的长度(绝对值/幅值)乘以z2的长度。
除法则是乘法的逆操作。z1/z2 相当于将z1 顺时针转动z2的辐角,再将其长度除以z2的长度。
比如 (4+3i) × 2i,和(4+3i) ÷ 2i。
再举个通分的例子:
[公式]
除法是通过分子分母共同乘以共轭复数来算的,这个学校里不可能不教。
匿名回答于2021-12-18 19:28:30
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
3. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi) (c+di)或者
4.除法运算规则:
①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),
即(a+bi)÷(c+di)=x+yi
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.
∴(cx-dy)+(dx+cy)i=a+bi.
由复数相等定义可知
解这个方程组,得
于是有:(a+bi)÷(c+di)= i.
②利用(c+di)(c-di)=c2+d2.于是将 的分母有理化得:
原式=(a+bi)÷(c+di)= .i
匿名回答于2022-07-03 07:54:27