全心思齐网

计算积分:(1)I=∫∫(D)ydσ,积分区域D是由曲线y²=x和y=-x+2围成的有界区域?

1

I=∫∫(D)ydσ

=∫(-2->1) ydy ∫(y^2->2-y) dx

=-9/4


2

∫(0->∞) e^(-x^2)dx=∫(0->∞) e^(-y^2)dy

所以∫(0->∞) e^(-x^2)dx

= √[∫(0->∞) e^(-x^2)dx * ∫(0->∞) e^(-y^2)dy]

=√[∫(0->∞)∫(0->∞)e^(-x^2-y^2)dxdy]


下面用极坐标计算∫(0->∞)∫(0->∞)e^(-x^2-y^2)dxdy

∫(0->∞)∫(0->∞)e^(-x^2-y^2)dxdy

=∫(0->π/2) ∫(0->+∞)e^(-r^2)rdrdθ

=(1/2)∫(0->π/2)dθ ∫(0->+∞) e^(-r^2)dr^2

=(π/4)∫(0->+∞) e^(-r^2)dr^2

=-(π/4)e^(-r^2) |∫(0->+∞)

=π/4


所以∫(0->∞) e^(-x^2)dx=√[∫(0->∞)∫(0->∞)e^(-x^2-y^2)dxdy]=(√π)/2

匿名回答于2024-05-17 19:24:50


相关知识问答