1.10整数部分就是1,转换成二进制1(这里整数转二进制不再赘述)
小数部分:0.1
0.1*2=0.2取整数部分0,基数=0.2
0.2*2=0.4取整数部分0,基数=0.4
0.4*2=0.8取整数部分0,基数=0.8
0.8*2=1.6取整数部分1,基数=1.6-1=0.6
0.6*2=1.2取整数部分1,基数=1.2-1=0.2
0.2*2=0.4取整数部分0,基数=0.4
.
.
.
直至基数为0。1.1用二进制表示为:1.000110...xxxx....(后面表示省略)
关于之前的演示,相当于,因为3.4的存储,发生了精度损失(3.5不会,因为3.5的二进制是11.1,补码存储依然不会发生精度损失),所以在相减的时候,发生了一次精度损失,最后结果存储的时候,再次发生一次精度损失。所以,才会出现最后的小尾巴情况。
第二部分:有哪些方法可以解决这个问题呢?
解决这个问题?不存在的,除非是提高精度——让计算机内能够完整的存储数字的二进制(二进制补码)表示,否则的话,只要有精度损失,就指不定什么时候会冒出来小尾巴。我们追求的解决,自然也是从提高精度,和“表面看起来正确”这两条道路去追求。
提高精度——Python本身自带的float已经是可支持浮点数的最高精度形式。当然,这个肯定是不能阻挡我们对更高精度的要求,这里可以自己实现高精度的数据形式,也可以使用Python扩展模块:Decimal。使用Decimal本身需要导入decimal包,初始化decimal数据可以使用整型数据和字符串,而不能使用float型数据,正如之前我们所说的那样,某些浮点数存储会发生精度损失——这意味着float本身就不够精确。
匿名回答于2024-05-22 23:20:49