结果是任意的,即四种可能:无穷大、无穷小、极限存在但非零、极限不存在也不是无穷大。=-------------有界函数可以是一个存在极限的函数(这个极限可以是0也可以是任意非零数),也可以是无穷大,也可以是有界但不存在极限且不是无穷大,这样拆分为:无穷小乘以无穷大,无穷大乘以无穷大,有非零极限的函数乘以无穷大,极限不存在也不是无穷大的函数乘以无穷大。其中的“无穷大乘以无穷大,有非零极限的函数乘以无穷大”的结果是无穷大,另外两种情况还要继续讨论。无穷小乘以无穷大时的结果有可能是无穷小,比如:x→0时,x^2乘以1/x。
第1,无穷小也是有界函数。所以如果无穷大乘以一个是无穷小的有界函数,那么结果可能是无穷小,无穷大,或其他极限情况。不确定。
第2,即使这个有界函数不是无穷小,无穷大和有界函数相乘,也有可能是无界的非无穷大函数。
例如当x→∞的时候,x是无穷大,sinx是有界函数。而xsinx是无界的非无穷大函数。并不是无穷大。
匿名回答于2021-09-14 07:47:06
无穷大乘以有界函数,结果不一定是无穷大。例如:当x→∞的时候,x是无穷大,sinx是有界函数。而xsinx是无界的非无穷大函数,并不是无穷大。
在数学方面,无穷与下述的主题或概念相关:数学的极限、阿列夫数、集合论中的类、戴德金-无限群、罗素悖论、超实数、射影几何、扩展的实数轴以及绝对无限。在一些主题或概念中,无穷被认为是一个超越边界而增加的概念,而不是一个数。
扩展资料:
在叙述一个区间时,只有上限,则是(-∞,x](x∈R);只有下限,则是[x,+∞)(x∈R);既没有上限又没有下限,则是(-∞,+∞)。
在高等数学中,规定:x为实数,当x>0时,x÷0=+∞;当x
+∞与实数加、减、乘、除、乘方、开方运算,结果永远是+∞;-∞与实数加、减、乘、除、乘方、开方运算,结果永远是-∞,(0×±∞无意义)。
+∞在某种意义上可以表达为x+1,因为x是表达任意实数或虚数的符号,而无限一定大于任何任意实数或虚数,而0.999...999(0.9的无限循环)=1的悖论显示无限或许是无限大到能涉及更高一个层面(因为0.9的无限循环是小于一的小数却等于1)。
匿名回答于2019-09-17 11:35:37
无穷大量与有界函数的乘积不一定是无穷大。
若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界有界函数并不一定是连续的。
根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。
匿名回答于2022-03-21 02:04:54