特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料:
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。
特征值乘积等于对应方阵行列式的值,特征值的和等于对应方阵对角线元素之和,比如设A,B是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx,Bx=mx成立,则称m是A,B的一个特征值,那么此时特征值乘积就等于m²,和等于2m。
扩展资料:
A和B为矩阵。其广义特征值(第二种意义)λ
可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作
。也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
匿名回答于2022-08-08 18:36:20
计算的特征多项式;求出特征方程的全部根,即为的全部特征值;对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量,其中是不全为零的任意实数。
匿名回答于2022-08-16 04:14:40