两边平方,y²=1-x²,移项:
x²+y²=1,所以是圆,但是y≥0
所以是一个在坐标轴上的上半圆,这个圆是单位圆。
匿名回答于2021-01-28 01:21:20
√(1+x)的原函数为2/3*(1+x)^(3/2)+C。具体解答过程如下。
解:令f(x)=√(1+x),F(x)为f(x)的原函数。
那么F(x)=∫√(1+x)dx
=∫√(1+x)d(1+x)
=2/3*(1+x)^(3/2)+C
即f(x)=√(1+x)的原函数为F(x)=2/3*(1+x)^(3/2)+C。
扩展资料:
1、不定积分的性质
(1)函数的和的不定积分等于各个函数的不定积分的和。即,
∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即,
∫k*f(x)dx=k∫f(x)dx
2、不定积分的公式
∫1/(x^2)dx=-1/x+C、∫adx=ax+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C
匿名回答于2021-11-30 05:43:10
令x=cost,dx=-sintdt
∫dx/√(1-x²)=∫-sintdt/sint=-t+C=-arccosx+C
对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
匿名回答于2021-05-27 10:27:42