全心思齐网

标准正交基组成的矩阵是正交矩阵吗?

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵A称为正交矩阵,算法:可以算是矩阵A的转置矩阵,接着将矩阵A乘以转置矩阵,若得到的是单位阵,则矩阵A是正交矩阵,若得到的不是单位阵,则矩阵A不是正交矩阵。


若A为正交阵,则满足以下条件:


1、A^T是正交矩阵。


2、A^T的各行是单位向量且两两正交;各列是单位向量且两两正交。


3、(Ax,Ay)=(x,y)x,y∈R


4、|A|=1或-1


5、A^T等于A逆


正交矩阵的性质:


1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;


2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;


3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;


4、A的列向量组也是正交单位向量组

匿名回答于2021-05-23 23:34:59


相关知识问答